4. Braiding a Linked List (braid.cpp)

Write a function braid that takes a linked list and weaves the reverse of that list into the original. (You will
need to create new nodes.) Here are a few examples:

, 4,2 >{1, 2, 4, 4,2, 1}
{3} -> {3, 3}
{1, 3, 6, 10, 15} -> {1, 15, 3, 10, 6, 6, 10, 3, 15, 1}

You should implement your code to match the following prototype

void braid(Node*& front)

We are passed in a linked list by
reference, front.

1.4 2
7 o

struct Node {
int data;
Node *next;

By

We want to *braid* the linked list by
weaving the reverse of that list into
the original.

2,4 1

7 =
_ - 2@ 4,20
-1 -2

To do this, we break the problem
into two steps.

1) We reverse the linked list.
2) We braid the reversed list back
into front.

reverse

To reverse a linked list,
we can loop tl«rougl« the
original list using a
pointer cur and
headInsert a node
containing cur->data
into a new list.

reverse

. 1 .4 2
5 =
w

reverse

reverse
1,4 ,2
/ / nullptr
T
reverse {1
llptr
reverse

- -l (2
7 o ==

T

cur

2]

41
& o =

tada!!! &




braid

We then want to
braid the new

reverse list into
front.

Note: the code for each line is in blue!

Node *restOfReverse = reverse->next;

braid
2

- =1 [4
S =

2 4 1

reverse
/ nllptr

T

restOfReverse

First, we add a pointer to
reverse->next so that the
nodes in the red dotted box
do not get stranded.

reverse->next = cur->next;

braid
1

1]/4) /2

front 3 /
nullptr

reverse
/ ullptr

T

restOfReverse

Then, we rewire reverse-
Snext to cur->next.

cur->next = reverse;

braid

cur

L

1 4 2

reverse = restOfReverse; B .
Y'auo(

cur

!
1]/4] |2

front /
nullptr Now that the two has

been broided in, we
set reverse to
restOfReverse.

4 1

P

reverse restOfReverse

front
/ o T
reverse
nullptr
restOfReverse
cur = cur->next->next; ‘A
l:’ rou

front /
ullptr

reverse

All donel!l!

void braid(Node*& front) {
Node *reverse = nullptr;
for (Node *curr = front; curr != nullptr; curr = curr->next) {
Node *newNode = new Node;
newNode->data = curr->data;
newNode->next = reverse;
reverse = newNode;

for (Node *curr = front; curr != nullptr; curr = curr->next->next)
Node *next = reverse->next;

-~

reverse->next = curr->next;
curr->next = reverse;

reverse = next;




